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a b s t r a c t

This work is focused on an easy-to-handle approach for estimating the residue power and capacity of a
lithium-ion cell during operation. For this purpose, an earlier presented lumped parameter electrochem-
ical battery model is employed. By means of the parameters accounting for the cathode capacity and the
electrolyte conductivity, the cell degradation is successfully reproduced. Moreover, the method enables
vailable online 15 June 2010

eywords:
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the distinction of capacity fade due to impedance rise and due to active material loss. High discharge
rates together with the correlated self-heating of the cell enable a model-based quantification of SEI and
electrolyte contributions to the overpotential.

© 2010 Elsevier B.V. All rights reserved.
olid–electrolyte interface
lectrolyte dissociation

. Introduction

The accurate and reliable prediction of available power and
nergy is a challenging task for battery management systems
BMS) in future electrochemical storage devices. This is based on

ainly two issues. First, lower and upper cut-off voltages must
e maintained for safety reasons [1]. Further on, it is exceedingly
esirable to fully exploit the installed capacity and thus, save cell
osts.

Recently, an advanced lumped parameter physics-based bat-
ery model was proposed by the authors [2]. This model forms a
romising basis for sophisticated functionalities such as an exact
tate of charge (SOC) and state of health (SOH) prediction. Since
he most state variables such as SOC are not accessible to measure-

ents [1,3], a state estimator is required for online applications.
oreover, the reliable prediction of available power and capacity
s intrinsically tied to an accurate parameter set. Unfortunately,
ithium-ion cells are subject to a significant loss of capacity and
ate capability fade during cyclic operation [4,5] as well as during
onger rest phases of several weeks or months. Consequently, in the
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case of a model-based BMS, the parameter set has to be checked
regularly in order to preserve the fidelity of the employed algo-
rithm. In consideration of the fact that physical models incorporate
30–80 constant parameters [2], this raises the question which are
the model parameters that are significantly affected by the cell
degradation.

The idea of addressing cell aging to only a few parameters of
an electrochemical battery was first proposed in [6] by means of
empirical models for the SOC, the solid electrolyte film resistance,
and the solid state diffusion coefficient of the anodic active mate-
rial. Based on these considerations conducted in [6], the paper at
hand discusses the monitoring of only two parameters which were
found to be especially sensitive for cell aging. In contrast to [6], the
identification of the parameters is done by means of a lumped elec-
trochemical battery model [2]. The investigations are extended to
high discharge rates, i.e. I = 8C. This allows to quantify the contri-
bution of the electrolyte conductivity to the overpotential.

In the following, an easy-to-handle algorithm is developed
that allows for the online monitoring of the cell’s state of health.
This becomes feasible by the lumped parameter structure of the
employed battery model. The capacity loss and the rate capability
fade is well reproduced by means of the tracing of two key param-

eters during cyclic operation. This is achieved by employing a state
of the art state estimator for nonlinear systems in combination
with recurrent identical load cases. The simulated predictions in the
SOH have been verified using experimental data of a high-power
lithium-ion cell that was cycled in a high temperature regime.
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ig. 1. Visualization of the proposed lithium-ion battery model. The electrochemi-
al cell structure is connected to the external load circuit by the current collectors
enoted by CC.

. Determination of key parameters for cell degradation

.1. Battery cell model and aging effects

The named extended lumped parameter model [2] consists of
ne representative intercalation particle for each electrode, see
ig. 1. The SOC is defined as the ratio of the currently stored amount
f charge in these particles to the physically accessible maximum
alue. The Butler–Volmer reaction kinetics equation [7] is used for
he charge transfer across the particle/electrolyte interface. Further
n, diffusion and migration of lithium-ions are assumed to occur
n the electrolyte. Within this work, the ion transport between
he active particles is characterized by an effective conductivity.
he law of Arrhenius, see [8] for instance, is used to describe the
bserved temperature dependence of the velocity of the electrolyte
nd solid-phase ion transport as well as of the reaction kinetics. A
emperature balance accounting for ohmic heating as source term
nd for radiation as well as convection as heat sinks yields the
ctual temperature of the cell. Finally, the terminal voltage and the
veraged cell temperature represent the responses of the system to
n excitation with an external load current in charge or discharge
irection.

It is known that the metal oxide cathode is much more sub-
ect to capacity losses than the mesocarbon microbead (MCMB)
node [9,10]. Therefore, within this work a degradation is con-
idered only for the cathode, whereas the aging of the anode is
eglected for simplicity. The actual capacity can be expressed by the
odel parameter porosity εc of the cathode. It can be determined

ccording to [2] as

c = K1
1

dSOC/dt
I, (1)

here K1 is a constant typical for the respective intercalation par-
icle, and I is the externally applied current [2]. The porosity εc

ccounts for the volume fraction of intercalation particles in the
athode. During the operation of the cell, some particles will crack
11–13] or simply be isolated from the conductive matrix [5]. These
egraded regions then reduce the effective porosity εc and thus, the
apacity of the respective electrode. Obviously, in the model pre-
ented, see Fig. 1, the porosity εc is of abstract nature since only one
epresentative particle is considered. The porosity actually oper-
tes as a scaling factor for the ratio of volume filled by intercalation
aterial to the total volume of the electrode.

With increasing (cyclic) age of the cell, an increase in the over-

otential is observed [5]. With respect to the proposed model, this
ssue might be addressed to (i) the continuous growth of an anodic
olid–electrolyte interface (SEI) layer [6,14] and/or (ii) to a reduced
onductivity � between the active materials, see Fig. 1. The SEI layer
ources 195 (2010) 7634–7638 7635

on the cathode is considered to be circumstantial [4,10,15]. When
applying material properties and growth dynamics as reported in
[16] for instance, the authors found the anodic SEI film resistance
to be of subsidiary relevance for the rate capability decrease, too.
By contrast, a decrease of the effective electrolyte conductivity �
provides a very well reproduction of the power capability fade. A
respective statement considering the degradation of the electrolyte
as continuous process in the cell can be found in [14], as wells as
concrete side reaction equations. The following result newly allows
for the model-based quantification of the electrolyte degradation.
The variable � shows a temperature dependence according to the
law of Arrhenius where only the preexponential factor is subject
to aging. The respective activation energy E0,L = 15.4 kJ mol−1 has
been determined in the course of [2] and suggests that � accounts
for the conductivity of a liquid [17], i.e. the electrolyte, to the most
extent. This correlation is visible first, when the applied load cur-
rent causes a significant self-heating of the cell of more than 10 K.
The conductivity � can be readily computed by utilizing the tem-
perature balance presented in [2], i.e.

dT

dt
= K5

(
f5(T) + 1

As
UOV (x, I, �)I

)
, (2)

where the surface overpotential difference UOV [6,2] reads as

UOV (x, I, �) = �˚BV (x, I) + ˚SEI,a(T, I) + ˚SEI,c(T, I)

+ �−1f7(T, I) + f8(x, I),︸ ︷︷ ︸
=:˚2

(3)

with �˚BV accounting for the potential contribution of the
Butler–Volmer reaction kinetics, ˚SEI,a/c for the SEI film layer
potential drops and ˚2 for the electrolyte potential. Obvi-
ously, Eqs. (2) and (3) contain the internal state vector x =
[qa, qc, SOCa, SOCc, T, cel]

T of the battery model [2]. The variables
qa, qc account for the volume averaged flux of lithium-ions in the
active particles, the variables SOCa, SOCc for the bulk state of charge
of these particles, and T is the cell temperature. The state cel repre-
sents the electrolyte lithium-ion concentration.

Summarizing, the parameters cathodic porosity εc and effective
electrolyte conductivity � are employed as key parameters in order
to estimate the rate capability fade and the capacity loss of the cell
as follows. The rate capability fade �R is directly expressed by the
increase of the electrolyte conductivity, i.e.

�R = �−1 − �−1
0 (4)

with �0 being the respective conductivity for a fresh battery. The
actual capacity Ctot,est of the cell is determined according to

Ctot,est = εc

εc,0
C0

︸ ︷︷ ︸
=:Cεc

− �C�, (5)

where C0 is the capacity of the new cell. The variable Cεc repre-
sents the capacity fade due to loss of active insertion material and
cycleable lithium. The capacity fade �C� caused by a declined con-
ductivity of the electrolyte is determined by

�C� = f7(Tavg, I)(�−1 − �−1
0 )I�8C,i, (6)

where a discharge with a current of I = 8C is assumed. The variable
�8C,i denotes the discharge time for the respective cycle number i.
For convenience, the cell temperature in the term f7 is set to the
average value T = Tavg during the discharge phase.
2.2. Online degradation estimation

The core idea is to perform congeneric and repeated load profiles
during different aging stages of the cell. Neglecting noise processes,
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for instance, the SEI layer does not seem to yield a consider-
ably contribution to UOV. Tentatively, an initial anodic SEI film
thickness of dSEI,a,10 = 5 nm with a resistance of RSEI,a = 0.0017 � m
is assumed. Suggesting a film growth up to a layer thickness of
dSEI,a,385 = 500 nm after 385 load cycles, the influence remains neg-
ig. 2. Schematic drawing of the proposed algorithm to determine the parameters
c and � for the calculation of the power and capacity fade. Since the computations
re done in discrete-time domain, the notation d(·)/dt is of symbolic nature.

he shift in respective measured signals for different load cycles
umbers can then be addressed to a shift in the two aging-relevant
arameters εc and � according to Eqs. (1)–(3). These parameters
re estimated by means of a least squares approach [18], and by
he measured quantities load current I, terminal voltage U, and cell
emperature T. The internal state vector x of the battery model [2]
s required within the terms �˚(x, I), f8(x, I) in Eq. (3), and for the
etermination of dSOC/dt in Eq. (1). Here, the values of the state vec-
or x are accessed by means of an Unscented Kalman Filter approach
UKF) [19]. The UKF is operated with the nominal parameters εc,0
nd �0 that represent a new cell. This approach exploits the fact
hat state estimators in general compensate model uncertainties
o a certain extent such that unmeasured signals converge towards
heir true physical values.1 The shifts in parameters relevant for
ging are extremely slow when compared to the charge/discharge
ynamics of the cell. A measurable variation in εc and � does typi-
ally not show up before the completion of a number of n ≥ 5 load
ycles. Practically, the following steps according to Fig. 2 are con-
ucted:

. Compare estimated states for congeneric load profiles but dif-
ferent aging stages.

. If there occurs a shift in the values, it must be related to capacity
loss and rate capability fade.

. Compute εc and � using a least squares (LSQ) approach [18] by
means of Eqs. (1)–(3) for a respective load cycle, see Fig. 2.

. Calculation of the residue capacity Ctot,est according to Eq. (5).

. Experimental validation

.1. Cycling behavior of the cell

In order to accelerate the degradation of the lithium-ion cell
uring operation, the cycling has been performed in an increased
mbient temperature regime. Therefore, the employed climate
hamber was set to T∞ = 338 K, i.e. to 65 ◦C. In Fig. 3, the discharge
hase with I = 8C is depicted as a cut-out of the whole load cycle and

iven examplarily for the 10th and the 385th cycle. The measured
ata are compared to the simulation model that has been parame-
erized offline. Thereby, the values for εc and � have been optimized
ndependently every 5 cycles [2]. During this high temperature

1 During preliminary testing, the applied UKF succeeded to converge without a
arameter update until the end of the 385 cycling experiments, where the cell inves-
igated had lost more than 35% of its initial capacity. Usually, a cell is considered to
e at its end of life when the residue capacity has declined to 80% of the initially
vailable amount of charge.
Fig. 3. Comparison of measured data and the model output obtained by means of a
offline identification including � and εc .

cycling, the time span �8C for the 8C discharge clearly decreases and
thus, the overall capacity of the cell as well. The variation in the start
time of the 8C discharge is due to voltage thresholds of the battery
test bench software in combination with the aged cell. The maxi-
mum temperature Tmax of the cell raises with the cycle numbers,
see Fig. 3c. Besides, the quality of a respective offline identification
[2] including εc and kc as optimization variables slightly worsens
with increasing cycle number as can be seen in Fig. 3b and c. This
indicates that εc and � actually cannot cover all but most of the cell
aging.

In order to investigate the impact of SEI growth and conductiv-
ity loss that might potentially cause an impedance rise, in Fig. 4 the
current induced overpotential UOV according to Eq. (3) is employed.
It is obvious that during the 8C discharge the overpotential UOV
is essentially affected by the electrolyte potential ˚2 including
�. With parameters as reported in recent publications, see [16]
Fig. 4. Contributions of different potentials to the terminal voltage.
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ig. 5. Development of the estimated values of porosity εc and inverse conductiv-
ty �−1 during cycling of the cell. The result of the newly proposed algorithm is
ompared to the data of a respective offline identification scheme.

igible, see Fig. 4. This model-based examination gives rise to the
uggestion to address the capacity fades and rate capability losses
o εc and �.

.2. Quantification and separation of power and capacity fade

Applying the algorithm presented in Section 2.2, the actual
alues of the cathodic effective porosity εc and the effective con-
uctivity � are computed for every 5th cycle. In Fig. 5 the result

s compared with a respective offline parameter identification [2].
hereas the estimation for εc is concordant for both methods, the

alues for the conductivity � start to diverge after roughly 150
ycles. Keeping in mind the decreased quality of the offline esti-
ation for an aged cell as depicted in Fig. 3, the values obtained

or � by means of the UKF and LSQ seem to be more reliable. This
ssumption is confirmed when the cell capacity predicted by the

ew algorithm as presented in Section 2 is compared to the current

ntegration data of the battery test bench, see Fig. 6. Here, Cεc is the
esidue capacity of the cell just considering a degradation of the
athode, i.e. a decrease in εc, as shown in Fig. 5a and Eq. (5). The

ig. 6. Contributions to the capacity fade by active material loss (labeled by εc) and
nternal resistance increase (labeled by �).
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amount of capacity lost by an impedance rise, i.e. �C� , is computed
by the product of the variation in the overpotential UOV due to a rise
in �−1, the actual discharge time span �8C,i, and the applied load
current I, see Eq. (6). The difference Ctot,est:=Cεc − �C� according
to Eq. (5) yields the overall cell capacity Ctot,est as estimated accord-
ing to the algorithm presented in Section 2.2. The result for Ctot,est

fits the amount of counted ampere hours (CTest bench) by the battery
test bench very well. The error |CTest bench − Ctot,est| in the predicted
cell capacity remains usually below 50 mAh. Related to an initial
capacity of C0 = 1.26 Ah, this is equivalent to an upper error bound
of less than 5%.

4. Conclusion

The application of the algorithm presented yields excellent
results for the estimation and quantification of power and capac-
ity fade of a high-power lithium-ion cell. Conducting repeatedly a
defined current load profile, the shifts in estimated state variables
can be used to determine the SOH of the battery investigated. More-
over, the algorithm presented allows for a clear distinction of the
capacity fade due to the degradation of the cathode as well as due
to the impedance rise.

The determination of the physical root cause for the impedance
rise of the cell is still an open task. If the recently reported material
property data and growth behavior of the SEI [16] is confirmed
by further researchers, the passivation layer must be excluded
from the list of candidates. Although, it seems to be likely that
the decomposition of the electrolyte contributes essentially to the
rate capability fading, this assumption should be subject to future
research.

The excellent robustness of the UKF allows a monitoring of the
capacity and rate capability of the cell without a parameter update
of the model during battery lifetime. Nevertheless, investigations
concerning the independence of parameter and state estimation
in the case of regular model updates are a matter of continuative
work.
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